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DATA AND COMPUTILITY ISLANDS IN REMOTE SENSING FOR EO
The rapid advancement of Earth observation (EO) capabilities is driving an

explosive increase in remote sensing data. There is an urgent need for advanced
processing techniques to unleash their application value.1 Generalist EO intelli-
gence refers to the ability to provide unified support for qualitative interpretation,
quantitative inversion, and interactive dialogue across diverse EO data and tasks.
It has attracted significant attention recently, prompting academia, industry, and
government to invest substantial resources.2 Through developing remote
sensing foundation models (RSFMs), generalist EO intelligence can ultimately
offer humanity a shared spatial-temporal intelligence service in various fields
(e.g., agriculture, forestry, and oceanography).3 However, a critical question re-
mains: have we truly unleashed the potential of RSFMs for generalist EO intelli-
gence? Despite the vast volume of remote sensing data, their distribution is often
fragmented and decentralized due to privacy concerns, storage bottlenecks, in-
dustrial competition, and geo-information security. This fragmentation leads to
data islands, which limit the full utilization of multi-source remote sensing data.
Moreover, computility (i.e., computational resources) typically develops in isola-
tion, inadequately supporting the large-scale training and application of RSFMs.

Limitation of the cloud-based architecture for RSFMs
Cloud-based architecture for remote sensing, exemplified by Google Earth En-

gine, is a widely adopted paradigm. It refers to the centralized storage and pro-
cessing of remote sensing data on a cloud platform. However, this centralized
paradigm demands substantial costs, typically affordable only by tech giants.
Furthermore, this architecture raises several concerns, such as privacy concerns,
monopolization, and ambiguous data ownership. Additionally, the data, storage,
and computility on a single cloud platformare limited and difficult to scale, result-
ing in scalability challenges that hinder the growth and applicability of RSFMs.

Opportunities and challenges of the collaborative architecture for RSFMs
Asweapproach theupcomingera of sixth-generationmobile networks (6G), ad-

vancements in communication technologies are expected to provide significant
network support, facilitating the collaborative architecture for RSFMs to address
thesecritical challenges.4 Techniques suchas federated learningandsplit learning
can facilitate cross-cloudcollaborative pre-trainingandfine-tuningofRSFMs, elim-
inating the need to transfer raw data. Recently, the success of the large language
model INTELLECT-1, trained across 30 clouds distributed globally, provides valu-
able insights into this novel paradigm.Additionally, techniques suchasmulti-agent
reinforcement learningandvision-and-languagenavigationcanenhance intelligent
task planning and inference. However, current research on collaborative architec-
tures in remote sensing remains insufficient to fully support generalist EO intelli-
gence. Challenges such as heterogeneity and trustworthiness continue to hinder
effective collaboration. In practice, collaborative architectures can be integrated
throughout the lifespan of RSFMs. In this commentary, we outline potential
research directions in two key phases: cross-cloud collaborative training and
collaborative inference of RSFMs for generalist EO intelligence (Figure 1).

CROSS-CLOUD COLLABORATIVE TRAINING OF RSFMs
Cross-cloud collaborative training of RSFMs enables cloud platforms to

conduct local training and exchange model parameters or intermediate results,
ll
thereby eliminating the need to transfer raw data. Federated learning and split
learning are privacy-preserving distributed collaborative technologies. Specif-
ically, they can empower RSFMs in two stages: self-supervised collaborative
pre-training and cloud-personalized collaborative fine-tuning. Local knowledge
derived from private remote sensing data on cloud platforms can be aggregated
and integrated with global expertise from public data. Furthermore, cloud plat-
forms can fine-tune task-specific models based on pre-trained RSFMs to deliver
more personalized services.
Challenges and future perspectives
Performance degradation induced by mixed heterogeneity. Highly mixed

heterogeneity manifests in data volumes, modalities, temporal variations,
geographic distributions, model architectures, and computility across cloud plat-
forms. The unification across three axes (i.e., architectures for multi-modal data,
pre-training objectives, and tasks) may mitigate it. Furthermore, adaptive collab-
oration methods (e.g., model fusion) can be developed at the data, model, and
cloud levels.
Time-consuming and resource-intensive communication. Frequent trans-

mission of massive parameters in RSFMs across cloud platforms incurs high
communication overhead, especially with limited bandwidth. Employing
advanced gradient compression (e.g., joint sparsification and quantization) and
communication scheduling (e.g., asynchronous communication and band-
width-aware scheduling) methods can help accelerate this process.
Concerns about trustworthiness. The rise of generative models has exacer-

bated this issue, necessitating the establishment of robustness against attacks.
Byzantine-robust federated learning can help identify and defend against untrust-
worthy collaborators based on model updates, while differential privacy can pre-
vent others from inferring raw data from gradient information by adding
controlled noise. Evaluating participant contributions for fairness using methods
like Shapley values and enhancing interpretability are also crucial avenues for
improving trustworthiness.
COLLABORATIVE INFERENCE OF RSFMs FOR GENERALIST EO
INTELLIGENCE
Collaborative inference of RSFMs involves the cooperation of multiple institu-

tions and agents. The future of RSFMs toward generalist EO intelligence is
centered around three key areas of collaborative inference: cross-cloud, cloud-
edge, and cross-edge collaboration.
Cross-cloud collaborative inference facilitates global high-resolution dynamic

mapping by pooling resources and integrating data across institutions. Institu-
tions utilize their own data and computility to map their assigned zones, collab-
oratively contributing to creating global high-resolution maps. This method em-
bodies zonal intelligence, overcoming previous limitations in storage, computility,
and data availability.
Cloud-edge collaborative inference addresses the limitations of edge devices

in complex environments by leveraging powerful RSFMs on cloud platforms.
For example, during an emergency response in a disaster, drones equipped
with vision-and-language navigation communicate with the cloud using images
or text. The cloud then provides route and task instructions. When unfamiliar
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Figure 1. The framework for cross-cloud collaborative training and collaborative inference of RSFMs for generalist EO intelligence
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scenarios arise, such as debris blocking the path, drones transmit images to
the cloud’s RSFMs for human-machine collaborative interpretation. The cloud
then assists drones by providing few-shot samples, which are used for
prompt-based inference on drones. This collaborative process enables improvi-
sational intelligence.

Cross-edge collaborative inferenceenables space-air-ground integrated collab-
oration by leveraging the strengths of a multi-agent system.5 It involves multiple
edge devices (e.g., drones and satellites), each contributing through autonomous
planning and collaborative perception. By fusing data from different time points,
spatial resolutions, spectral ranges, and sensor observation angles, collaboration
among these agents improves the accuracy and adaptability of EO, demon-
strating the power of collective intelligence.

Challenges and future perspectives
Complexity in collaboration. Optimizing the scheduling process is crucial for

ensuring efficient task allocation, resource utilization, and seamless coordination.
Communication limitations pose challenges to maintaining real-time synchroni-
zation. Variations in altitudes and trajectories of devices increase the complexity
of the georeferencing process. Reinforcement learning can autonomously
manage task scheduling. Continual learning on edge devices enhances the evo-
lution of collaborative systems and enables real-time, adaptive improvements in
resource-limited environments.5

Lightweight deployment. Current edge devices face significant constraints
in processing power, memory capacity, and energy efficiency, making it chal-
lenging to deploy RSFMs. For example, the basic version of SkySense incorpo-
rates 2.06 billion parameters, which requires professional graphics processing
units (GPUs) in servers for inference.2 Techniques such as knowledge distillation
and quantization can be employed. In particular, they should adapt to the capa-
bility for processing multi-modal data and handling the large-size nature of
remote sensing images.

Worries about attacks. Security concerns, including adversarial samples,
data poisoning, and backdoor attacks, are pervasive in collaborative inference.
The communication process within the collaborative system involves the trans-
mission of images and model parameters. Therefore, identifying and defending
2 The Innovation 6(6): 100841, June 2, 2025
against these threats is critical, particularly in black-box scenarios. Ensuring data
integrity protection is essential for maintaining system security.

CONCLUSION
Recently, RSFMs have demonstrated significant potential in advancing gener-

alist EO intelligence. However, the persistent challenges of data and computility
islands severely restrict the full potential of RSFMs. Therefore, we strongly advo-
cate for global collaboration among institutions to construct and develop RSFMs
through cross-cloud, cloud-edge, and cross-edge collaboration, thereby estab-
lishing a collaborative architecture to bridge these islands. Future research
should focus on developing collaborative architectures at both hardware and
software levels to ensure seamless integration. Ultimately, collaborative ap-
proaches will enhance the scalability and efficiency of RSFMs, fostering deeper
insights and understanding in EO research and unleashing the potential of
RSFMs for generalist EO intelligence.
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