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Abstract—This article presents the scientific outcomes of the
2024 Data Fusion Contest (DFC24) organized by the Image
Analysis and Data Fusion Technical Committee (IADF TC)
of the IEEE Geoscience and Remote Sensing Society (GRSS),
the Space for Climate Observatory (SCO), the Centre national
d’etudes spatiales (CNES), the National Aeronautics and Space
Administration (NASA), and the Centre Européen de Recherche
et de Formation Avancée et Calcul Scientifique (CERFACS).
The contest aims to advance image analysis and data fusion
algorithms that generate reliable flood maps from multi-modal
Earth observation imagery. The DFC24 provides a large-scale,
multi-modal flood mapping benchmarking dataset and comprises
two challenging competition tracks on the flood mapping task,
one based on Synthetic Aperture Radar (SAR) imagery, and
another using passive-optical imagery. Additional features, such
as a digital terrain model and land-use and water occurrence,
are also provided to the participants. This paper presents the
methods and results obtained by the first and second-ranked
teams of each track. During the development phase, 1935 people
registered for the contest, while at the end 46 for Track 1 and
52 for Track 2 teams competed during the test phase in the
two tracks, respectively. The data of this contest are openly
available to the community for further research, development,
and refinement of Geospatial Artificial Intelligence (GeoAI), data
fusion, and flood mapping methods.

Index Terms—Transformers, convolutional neural networks,
deep learning, data fusion, flood mapping, remote sensing.

I. INTRODUCTION

As a result of climate change, extreme hydro-meteorological
events are becoming increasingly frequent, provoking impor-
tant socio-economic and cultural damages and causing more
than 70000 deaths per year. Rapid flood mapping products
built on geospatial imaging modalities play an important
role in informing flood emergency response and management.
These maps are generated from remote sensing data acquired
before, during, or after an event to quantify the extent of
flooding. The information they provide is crucial for emer-
gency response and damage assessment. There has been a
growing interest in generating flood maps from SAR [1]–
[5] and passive-optical Earth observations [6], [7], as well as
using multi-source Earth observation data [8].

The DFC24, organized by the IADF TC of the GRSS,
the SCO, the CNES, the NASA, and the CERFACS, aims to
advance image analysis and data fusion algorithms that gen-
erate reliable flood maps from multi-modal Earth observation

imagery, see Fig. 1. The DFC24 provides a large-scale, multi-
modal flood mapping benchmarking dataset and comprises
two challenging competition tracks on the flood mapping task,
one based on SAR imagery, and another using passive-optical
imagery. Additional features, such as a digital terrain model
and land-use and water occurrence, are also provided to the
participants.

The contest is designed as a benchmark competition fol-
lowing previous editions, e.g., [9]–[17], and consists of two
parallel tracks:

• Track 1: Flood mapping from SAR imagery;
• Track 2: Flood mapping from passive-optical imagery.

The reference data is sourced from the labeled flood extent
provided by the Copernicus Emergency Management Service
(EMS) Rapid Mapping [18] for Track-1 and from the labeled
OPERA Dynamic Surface Water Extent CalVal database for
Track-2 [19]. Additional reference data for both Track-1 and
2 is obtained from the CERFACS hydrodynamics modeling
with data assimilation from in-situ and remote sensing data
[20], [21].

Track 1: Flood mapping from SAR data

The focus of Track 1 is to generate water-cover maps
from Copernicus Sentinel-1 SAR imagery [22]. All Sentinel-1
images have been processed using S1Tiling to generate time
series of calibrated, ortho-rectified and filtered images on any
terrestrial region of the Earth [23]. The resulting images were
registered to Sentinel-2 optical images, using the same Military
Grid Reference System (MGRS) geographic reference. Both
polarizations were considered to generate and process VV and
VH products that are sensitive to surface scattering reflections
such as water bodies. An analysis-ready dataset covering 20
flood sites and events is provided, composed of 2331 patches
based on Sentinel-1 images of 512×512 pixels size. This
dataset is divided into 1631 patches for the training phase, 349
for the validation phase, and 351 for the test phase. They origi-
nate from Copernicus Emergency Management Service dataset
(1593 patches) and CERFACS simulations using hydrodynam-
ics modeling with data assimilation over the Garonne river
in France (434 patches) and the Ohio river in the US (304
patches).
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Fig. 1: The banner image of the 2024 IEEE GRSS Data Fusion Contest.

Track 2: Flood mapping from passive-optical imagery

The focus of Track 2 is mapping the water surface from
the Harmonized Landsat and Sentinel-2 optical imagery (HLS,
[24]). Despite having several multispectral spectral bands and
a significantly better signal-to-noise ratio, water reflectance is
highly variable in the optical domain. In addition, the availabil-
ity of “useful” optical data around flooding events is generally
poorer due to cloud cover. In this track, images from a set of 72
events are provided over the world, with the goal of accurately
determining water vs. non-water pixels in these event areas by
fusing data from one or more of the provided data sources.
With optical data being less resolved, 30m instead of 10m as
in Track-1, and also less availability due to cloud coverage,
the patch size has been reduced to 128×128 pixels in Track-2.
We obtained a total of 891 patches distributed as follows: 306
training, 125 validation, and 460 test patches. They originate
from the OPERA dataset (194), CERFACS simulations over
the Garonne river in France (94 patches) and the Ohio river in
the US (206 patches) and Copernicus Emergency Management
Service dataset (397 patches).

THE DATASET

Images for DFC24 are acquired using Sentinel-1 (SAR),
Sentinel-2 (passive-optical) and Landsat-8/9 (passive-optical).
Additionally, the following data “sources” are made available
to the participants: Digital Elevation Model (DEM) from Merit
[25] and Copernicus DEM [26], ESA world cover map [27],
and water occurrence probability from the Global Surface
Water Dataset [28]. The Water Occurrence dataset reveals
the frequency of surface water presence from March 1984
to December 2021, enabling a comprehensive examination
of global water dynamics and offering insights into locations
featuring permanent water bodies or areas prone to flooding.
The data of this contest remains openly available to the
community1.

1https://ieee-dataport.org/competitions/2024-ieee-grss-data-fusion-contest-
flood-rapid-mapping

II. CONTEST ORGANIZATION AND SUBMISSIONS

The contest consisted of two phases.
• Phase 1: Participants are provided training data and addi-

tional validation images (without corresponding reference
data) to train and validate their algorithms. Participants
can submit results for the validation set to the Codalab
competition website to get feedback on their performance.
The performance of the best submission from each
account was displayed on the leaderboard. In parallel,
participants are expected to submit a short description of
the approach used to be eligible to enter Phase 2.

• Phase 2: Participants received the test data set (without
the corresponding reference data) and submitted their
results within seven days from the release of the test
data. After evaluation of the results, three winners for
each track were announced.

The training and validation datasets were made available
on January 8, 2024 via IEEE DataPort. The evaluation server
with a public leaderboard was also open on January 8, 2024
so that participants could submit prediction results for the
validation set to the Codalab competition to get feedback
on the performance of their approaches. Participants had to
submit a short description of the approach used by March 1,
2024, to enter the test phase. The test phase was scheduled
from March 11, 2024 through March 17, 2024. The test
phase is kept short to ensure an objective and fair comparison
among methods. Participants have an opportunity to provide
an updated (final) description of their approach. After the
final check of the submitted semantic segmentation results,
comparing them with the undisclosed ground truth for testing,
winners were announced on March 29, 2024.

More information regarding data download and regis-
tration to the evaluation server can be found at the
IADF TC website (https://www.grss-ieee.org/community/
technical-committees/2024-ieee-grss-data-fusion-contest/).

We received 1935 registrations at the CodaLab competition
website during the development phase (see Table I). For
Track 1, there were 809 unique registrations at the CodaLab
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Fig. 2: Illustrating the dataset layers (left), and example SAR image along with annotation of flooded area over Navarre, Spain,
2018-04-13 (right).

TABLE I: Registration and submission statistics of the two
tracks

Track 1 Track 2 Total
Applications 809 1126 1935

Approved applications 772 1093 1865
Teams with successful submissions 46 52 98

submissions 2136 3038 5174

competition website, 772 of which were approved. 46 teams
entered the test phase after screening the descriptions of
their approaches submitted by the end of the development
phase. 2136 submissions were received during the develop-
ment phase, with active participation from all registered teams.
During the test phase, the maximum number of submissions
per team was limited to 5 per day.

For Track 2, there were 1126 unique registrations at the
CodaLab competition website during, 1126 of which were
approved. 52 teams entered the test phase after screening the
descriptions of their approaches submitted by the end of the
development phase. In total, 3038 submissions were received
during the development phase, with active participation from
all registered teams. During the test phase, the maximum
number of submissions per team was limited to 5 per day.

The first to third-ranked teams in each track were awarded
as winners of the DFC2024 for each track and were invited
to present their solutions during the 2024 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS 2024).

In the following, we list the winning teams of the DFC2024
in Track 1

• 1st place: team Henryljp; He Huang, Jiepan Li, Wei He,
Hongyan Zhang, Liangpei Zhang from Wuhan University
and China University of Geosciences, China.

• 2nd place: team tingliu; Ting Liu, Mengke Yuan, Chao-
ran Lu, Kaixuan Lu, Baochai Peng, Heyang Duan,
Mengya Li, Pan Zhang, Tao Wang , Tongkui Liao
from PIESAT Information Technology Co, Ltd., Beijing,
China.

• 3rd place: team Genshin1/OnePiece; Shuchang Zou,

Qian Yang from PIESAT Information Technology Co,
Ltd., Beijing, China.

and in Track 2

• 1st place: team Henryljp team; Jiepan Li, He Huang,
Wei He, Hongyan Zhang, Liangpei Zhang from Wuhan
University and China University of Geosciences, China.

• 2nd place: team bodang1220 team; Yansheng Li, Bo
Dang, Fanyi Wei, Jieyi Tan, Yangjie Lin from Wuhan
University, China.

• 3rd place: team IPIU-XDU; Xiaoqiang Lu, Tong Gou,
Zhongjian Huang, Yuting Yang, Licheng Jiao, Lingling
Li, Xu Liu, Fang Liu from Xidian University, China.

The two best-ranked teams in both tracks were invited to
provide a detailed presentation on their respective approaches
that won the DFC24 in this paper. Details of their methodology
are provided in Section III through VI.

III. TRACK 1 - FIRST PLACE: TEAM HENRYLJP

A. Method

Fig. 3: An illustration of the merging process.
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1) Data Preprocessing Strategy: Upon analyzing the
dataset provided by the official source, we identified inconsis-
tent degrees of overlap among the original 512× 512 images.
To address this issue, we adopted a manual visual stitching
strategy, dedicating one month to merging the training set
(as shown in Fig. 3). This effort resulted in 30 large images
encompassing diverse scenes. Subsequently, we employed a
five-fold cross-validation approach to partition these large
images into training and validation sets, ensuring sufficient
generalization capability for the model.

2) Feature Extraction: Given the vast array of land features
captured in remote sensing images, the intricate nature of
contextual information, and the inherent irregularities in SAR
images, we incorporate the concept of uncertainty [32], [33] to
tackle these challenges and propose the Uncertainty-Aware Fu-
sion Network (UAFNet). As shown in Fig. 4, we first adopted
a general encoder-decoder network to get a relatively uncertain
extraction map. Regarding the general encoder-decoder part,
we adopted PVT-V2 [34] as the encoder backbone to extract
multi-level features from the input image and introduce a
multi-branch dilation convolution blocks (MBDC) to enhance
the encoded features (Ei, {i = 1, 2, 3, 4}), and used a typical
cross-fusion strategy (Feature Pyramid Network (FPN [35]))
to obtain a relatively uncertain extraction map M4. The whole
process can be represented as:

Fi = MBDC(Ei), i = 1, 2, 3, 4,

M4 = FPN(F1, F2, F3, F4).
(1)

Based on the output features (Fi, {i = 1, 2, 3, 4}) and uncer-
tain extraction map M4, our UAFNet acts as a decoder strategy
to deal with the general flood extraction challenges and output
a refined extraction map with low uncertainty.

3) Uncertainty-Aware Fusion Module: Flood regions in RS
imagery often present ambiguous boundaries and complex
backgrounds, which introduce notable prediction uncertainty.
To mitigate this, we adopt an Uncertainty-Aware Fusion Mod-
ule (UAFM) inspired by UANet [36] that uses pixel-wise
uncertainty to guide multi-scale feature fusion.

First, we compute foreground and background uncertainty
maps from the extraction map M (after a Sigmoid activation):

Uf = Sigmoid(M)− 0.5,

Ub = 0.5− Sigmoid(M),
(2)

where values close to 0 indicate low uncertainty while val-
ues near 0.5 indicate high uncertainty for the corresponding
perspective.

We then discretize the non-negative part of these uncer-
tainty values into five uncertainty ranks (URA) to emphasize
ambiguous pixels in a graded manner. Concretely, for a pixel
uncertainty U ∈ [0, 0.5] we use the following rank mapping
(higher rank ⇒ higher uncertainty):

URA(U) =



5, 0.0 ≤ U < 0.1,

4, 0.1 ≤ U < 0.2,

3, 0.2 ≤ U < 0.3,

2, 0.3 ≤ U < 0.4,

1, 0.4 ≤ U ≤ 0.5,

0, U < 0

(3)

For implementation we convert the rank r ∈ {0, 1, . . . , 5}
into a fusion weight by a simple linear mapping, e.g., w = r/5,
so that more uncertain pixels receive larger weights during
feature enhancement.

At each fusion stage, these uncertainty-derived weights re-
weight both high-level and low-level features to highlight am-
biguous regions from foreground and background viewpoints.
Taking the fusion of F4 and F3 as an example, the uncertainty-
enhanced high-level feature is

Fu
4 = Conv1×1

(
Concat(W 4

f ⊙ F4, W
4
b ⊙ F4)

)
, (4)

where W 4
f and W 4

b are the weight maps derived from the URA
applied to M4, ⊙ denotes element-wise multiplication, and
Conv1×1 restores channel dimensions after concatenation. The
lower-level feature F3 is enhanced similarly using upsampled
versions of the weight maps, producing Fu

3 . The two enhanced
features are then fused and decoded:

G3 = Conv3×3

(
Concat(Fu

3 , Up(Fu
4 ))

)
,

M3 = Conv3×3(G3).
(5)

This top-down uncertainty-guided fusion is applied iteratively
to produce progressively less uncertain extraction maps at
deeper decoding stages. All intermediate outputs are super-
vised by binary cross-entropy:

Loss =

4∑
i=1

BCE(Mi, GT ), (6)

where Mi denotes the predicted map at stage i and GT is the
ground truth.

4) Post-Processing Strategy: To create a three-dimensional
input for leveraging the PVT-v2 pre-trained on ImageNet [37]
and enhancing the feature representation capability, we con-
catenated VH, VV, and VH together. Furthermore, by utilizing
various versions of PVT as encoders (PVT-V2-B2, PVT-
V2-B3, PVT-V2-B4, PVT-V2-B5), we trained four instances
of UAFNet and adopted the multi-model fusion strategy to
improve the extraction performance. Additionally, upon ana-
lyzing the official training data, we discovered the crucial role
of provided land cover data in post-processing. To enhance
the post-processing process, we merged the predicted results
of our strategy on the test set with the designated water regions
from the land cover data. Finally, it is worth noting that we
applied twelve enhancements to each image in the training set
by using six rotation angles and six flip modes, effectively
expanding the dataset.

B. Results

1) Visual Comparison: As depicted in Fig. 5, we selected
two typical examples to illustrate the effectiveness of our
proposed UAFNet. It can be seen that compared to other
methods, there are some slight issues in extracting details.
Our method can achieve results that are closer to the true
labels in terms of details. Due to the limitation of resolution,
we can also see from VH and VV images that it is difficult
to accurately determine whether certain pixel areas belong to
flood. However, to some extent, our uncertainty strategy can
overcome this challenge.

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2026.3652462

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 5

Fig. 4: The structure of the Uncertainty-Aware Fusion Network.

(a) VH (b) VV (c) GT (d) HRNet [29] (e) UNet [30] (f) SF [31] (g) UAFNet (h) Ours

Fig. 5: Visual comparison between UAFNet and the compared methods. SF is short for SegFormer, and Ours indicates the
visual results of Multi-UAFNet+post-processing.

TABLE II: Quantitative results on the official test dataset. ∗

indicates the model variant without UAFM, and PP denotes
the post-processing strategy.
Method F1 (%) Params (M) FLOPS (G)
UNet (R50) 73.935 30.070 33.053
SegFormer (MIT-B5) 74.996 65.846 93.822
UNet (B2) 75.363 40.126 33.053
UAFNet∗ (B2) 76.808 25.422 23.005
UAFNet (B2) 78.756 25.589 23.902
UAFNet (B3) 78.773 45.464 38.549
UAFNet (B4) 79.069 62.782 54.837
UAFNet (B5) 80.824 82.182 62.995
Multi-UAFNet 81.890 216.017 180.283
Multi-UAFNet + PP 82.985 216.017 360.566

2) Quantitative Comparison: As illustrated in Tab. II, it
is evident that the different methods and backbone net-

work versions exhibit varying levels of performance in the
flood extraction task. The traditional ResNet-50-based [38]
UNet [30] method achieves an F1 score of 73.935%, while
SegFormer [31] slightly outperforms it with a score of
74.996%. However, when combining UNet with the PVT-V2-
b2 backbone network, there is a noticeable improvement in
performance, with an F1 score of 75.363%. This indicates
that the PVT series of backbone networks have a positive
impact on flood extraction tasks. At the same time, compared
to UNet (PVT-V2-B2), UAFNet (PVT-V2-B2) demonstrates a
significant improvement in the F1 score, achieving 78.756%.
Meanwhile, we can observe that the improvement brought by
UAFM can directly enhance the model’s performance from
an F1 score of 76.808% to 78.756%, fully demonstrating the
effectiveness of UAFM. As we upgrade the backbone network
version from PVT-V2-B2 to PVT-V2-B5, the performance of
UAFNet gradually improves, reaching a peak of 80.824%.
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This underscores the superiority of the UAFNet approach
in handling flood extraction tasks and its scalability with
more capable backbone networks. Furthermore, we explore a
multi-model fusion strategy, known as Multi-UAFNet, which
combines the results from four models ranging from PVT-V2-
B2 to PVT-V2-B5. This strategy further enhances the accu-
racy of flood extraction, achieving an F1 score of 81.890%,
surpassing the best performance of a single model. Finally, by
introducing a post-processing strategy, we optimize the results
of Multi-UAFNet, achieving the highest F1 score of 82.985%.
This not only demonstrates the effectiveness of the UAFNet
approach but also highlights the importance of post-processing
in enhancing the precision of flood extraction.

In summary, our UAFNet method, coupled with the PVT
series of backbone networks, significantly improves the perfor-
mance of flood extraction tasks. Through multi-model fusion
and post-processing, we further enhance the accuracy of
flood detection, providing robust technical support for flood
monitoring and early warning systems.

3) Computational Efficiency and Practical Implications:
To further assess the practicality of the proposed framework
for real-time flood mapping, we analyze the computational
efficiency of our models and other winning methods, as
summarized in Table II. Several top-ranking approaches rely
on heavy preprocessing steps, such as manual image stitching
and extensive data augmentation. These operations are mainly
dataset-specific engineering optimizations adopted during the
competition and are difficult to quantify in terms of computa-
tional complexity. In contrast, our analysis focuses on model-
side factors that can be objectively measured, including the
number of parameters (Params) and floating-point operations
(FLOPs).

As shown in Table II, the proposed UAFNet series achieves
a favorable trade-off between accuracy and efficiency. Com-
pared with standard baselines such as UNet (R50) and Seg-
Former (MIT-B5), UAFNet not only improves the F1 score but
also significantly reduces both Params and FLOPs, demon-
strating superior computational efficiency. Additionally, we
report the ensemble variant (Multi-UAFNet) and its post-
processed version (Multi-UAFNet + PP), which achieve the
highest overall accuracy while naturally increasing the compu-
tational cost due to multi-model fusion. These results highlight
that UAFNet maintains a strong balance between performance
and efficiency, making it a promising and scalable solution for
large-scale flood mapping applications.

C. Discussion

During the 2024 IEEE GRSS Data Fusion Contest, we
proposed the UAFNet to tackle uncertainty challenges in flood
mapping using SAR data. Experimental results highlighted the
effectiveness of UAFNet, securing first place in Track 1 of
the contest [39]. In the future, we will continue to explore
the approach to achieve high-precision flood extraction on a
global scale.

IV. TRACK 1 - SECOND PLACE: TEAM TINGLIU

A. Method

1) Data Normalization Module: We have analyzed the
distribution of water and background, and observe that the
categories contained in the dataset are unbalanced, water area
is accounted for less than 7%. Also, the multi-source data is
also analyzed and we conclude that 1) DTM (Merit DEM) and
DSM (Copernicus DEM GLO-30) have the same distribution,
and we use the averaged value (AvgDEM ) for our model to
address the invalid data in these data sources. Additionally, the
areas where AvgDEM ≤ 250 contain 99% water area. 2) The
value in the water occurrence probability map is below 100
in most areas, with the occurrence probability being less than
1.6%. 3) the multi-modal data sources can be classified into
two groups: the polarized VV and VH with low-level semantic
information and AvgDEM , LCM (ESA World Cover Map),
and WOP (Global Surface Water occurrence probability) with
high-level semantic information.

Based on these findings, we will standardize the two input
groups as follows. For the low-level semantic data group,
we utilize NMT methods [40](N times the mean of non-zero
data for truncation and stretching of the original SAR data)
to convert the polarized VV, VH into a uint8 data format.
Subsequently, by expanding the radar vegetation index, we
generate a pseudo-color image. On the other hand, for the
high-level semantic data group, we truncate the AvgDEM
and standardize the three spectrum bands using the mean and
standard deviation.

2) Siamese Network: A Siamese network with dual back-
bone branches is built for various multi-modal encoders,
and utilizes the UperNet [41] decoder for flood semantic
segmentation. State-of-the-art backbones like ConvNeXt [42]
(CT: ConvNeXt-Tiny, CS: ConvNeXt-Small, CB: ConvNeXt-
Base, CL: ConvNeXt-large), Swin Transformer [43] (SB:
SwinTransformer-Base), InternImage [44] (IB: InternImage-
Base) are employed to explore various backbone combinations
for the Siamese network. Three distinct feature interaction
strategies at different levels: concatenation (Cat.), feature
exchange (Ex.), and Aggregation-Distribution (AD.) [45] are
evaluated, and Cat. is verified to be the optimal feature
extraction approach.

B. Results

1) Implementation Details: We employ a three stages train-
ing process: 1) Train with 80% of the training dataset and
evaluating on the remaining 20%. In this process, we employ
the AdamW optimizer with initial learning rate of 2 × 10−4,
a weight decay of 0.05, a scheduler that uses linear learning
rate decay, and a linear warm-up of 1500 iterations. Models are
trained on 2 GPUs with 12 images per GPU for 80k iterations.
The data augmentations adopted by us include random re-
scaling within ratio range [0.5, 2.0], random cropping, random
flipping, and random rotate with 90 degree. 2) Fine-tune on
the entire dataset using different scales, including 512, 768,
1024. The optimizer, scheduler, and other augmentations are
the same. The initial learning rate is 10−4 and we just train
for 40k iterations. 3) Ensemble the best models and just use
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Fig. 6: The Siamese network and the overall network architecture diagram of the proposed water extractor. Features from
different semantic levels are visualized using distinct colors in each module.

the predicted result of the test data in the development phase
as pseudo label. A pseudo learning is performed on this stage
with 20k iterations.

During inference, we employ a fixed data scale of 768
testing approach for the models in the multi-scale training
phase. This resolution is maintained throughout the subsequent
fine-tuning and pseudo-learning stages. To generate the final
output, we combine the outcomes from various models by
averaging them, where values exceeding a predetermined
threshold are considered indicative of the water region.

2) Main Results and Ablation Study: Table III shows the
quantitative results. The highest score of 79.17% is achieved
by combining multiple segmentation models with various
Siamese networks and iterations. The transformer-based model
is not as effective as the convolution-based models in this
framework. A brief visual illustration is presented Fig. 7.
We found that many results are counter-visual, and other
information, such as DEM and LCM, etc., can play a good
auxiliary role at this time. We have also explored different
input modalities and normalization modules, and discovered
that our data normalization module yields the best results. The
details are presented in Table IV.

C. Discussion

After conducting thorough experiments, we introduce a
Data Normalization Module and a Siamese Network to lever-
age SAR, DEM, land cover map, and Water Occurrence
Probability to tackle the challenges posed by the imaging
mechanism of SAR, including shadow, low texture of bare
soil, and roads’ influence. Future research should focus on
developing innovative fusion techniques that can effectively
combine information from different modalities in Siamese
networks with some strong fusion strategies. This will help
in improving their ability to generalize across various tasks
and datasets. Overall, continued exploration in this area will

be essential to unlock the full potential of these networks in
various applications.

V. TRACK 2 - FIRST PLACE: TEAM HENRYLJP

A. Method

The diverse range of data sources inherently introduces
aleatoric uncertainty, primarily due to the inclusion of syn-
thetic and non-authentic data. Furthermore, the extensive cov-
erage of Remote Sensing (RS) imagery, combined with the
relatively small proportion of flood-affected areas, leads to a
pronounced imbalance between foreground and background
classes, thereby amplifying epistemic uncertainty [32]. In ad-
dition, the 30-meter resolution of the imagery poses challenges
in distinguishing between visually similar features in complex
flood scenarios, further intensifying epistemic uncertainty in
the models [32]. These factors collectively present significant
hurdles to accurate flood detection and analysis. To tackle
these uncertainties, we propose an Uncertainty-aware Detail-
Preserving Network (UADPNet) designed for rapid flood map-
ping using multi-source optical data. In the following parts,
we will provide a comprehensive overview of our framework,
encompassing the data preprocessing strategy, the UADPNet
architecture, and the post-processing methodology.

1) Data Preprocessing Strategy: Upon analyzing the
dataset provided by the official source, we identified inconsis-
tent degrees of overlap among the original 128× 128 images.
To address this issue, we adopted a manual visual stitching
strategy, (as shown in Fig. 8). This effort resulted in 10
large images encompassing diverse scenes. Subsequently, we
employed a five-fold cross-validation approach to partition
these large images into training and validation sets, ensuring
sufficient generalization capability for the model.

2) Stage A: Aleatoric Uncertainty Estimator: In the realm
of flood extraction, our primary objective is to minimize the
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TABLE III: The main results of our method. All models utilize the Data Normalization Module and Siamese Network structure,
with Bce and BDice loss equally weighted. The notation ”X/Y/Z” denotes the number of training iterations for each of the
three stages, specifically ”X” iterations for stage 1, ”Y iterations for stage 2, and ”Z” iterations for stage 3.

Model Scale Iterations (k) Development Phase (F1) Test Phase (F1)

CB+CS 1024 80/40/10 0.94832 0.78347
CB+CS 1024 80/40/12 0.94859 0.7828
CB+CS 1024 80/40/20 0.94858 0.7826
CB+CS 1024 80/40/16 0.9487 0.7817
SB+SS 1024 80/40/20 / 0.78143
IB+IB 1024 80/40/0 / 0.78216
IB+IB 1024 80/40/40 / 0.78502

Model Ensemble 0.94882 0.79170

Fig. 7: Two data samples are presented to illustrate the process of our method. The first column displays the original SAR
data, represented as VH. The second column showcases the generated pseudo-color image, while the third column features
the clipped average DEM. The overlay of the average DEM and SAR is presented in the fifth column. Lastly, the final two
columns display the water probability map and the predicted result map.

TABLE IV: The performance of different input modalities. The
bold value indicates the best performance, which is achieved
by our Data Normalization Module.

InputModal Framework F1

VV,VH,VV UperNet CB 0.904
VV,VH,VV/VH UperNet CB 0.901

VV,VH,RVI UperNet CB 0.905
VV,VH,VV

AvgDEM,LCM,WOP Upernet CB + CS 0.920
VV,VH,VV

AvgDEM,LCM,WOP SiameseNet CB + CS 0.921
VV,VH,RVI

AvgDEM,LCM,WOP SiameseNet CB + CS 0.926

Fig. 8: An illustration of the merging process.

overall loss function, which serves as a metric for evaluat-
ing the model’s performance. This loss function is formally

expressed as:

min
θ

EX,Y [L(f(X; θ), Y )]

≈ 1

N

N∑
i=1

L(f(xi; θ), yi),
(7)

where θ denotes the learned parameters by the model f(·), and
(xi, yi) are N individual samples drawn from the joint data
distribution p(X,Y ), where X represents the concatenation
of the NIR, Green, and Blue bands from the dataset, and Y
refers to the corresponding ground truth. The function L(·)
quantifies the loss between the model’s predictions and the
ground truth.

As mentioned earlier, due to the presence of simulated data
in the training dataset, coupled with a certain degree of human
error in the real observation data, there is an inevitable uncer-
tainty (aleatoric uncertainty) at the data level. To address this
challenge, we utilize the Conditional Variational Autoencoder
(CVAE [47]) to estimate this aleatoric uncertainty using maxi-
mum likelihood estimation. In CVAE, the prior distribution of
latent variables is conditioned on the input data X and follows
a Gaussian distribution. A typical conditional generative model
comprises three key components: conditional variables X ,
latent variables z, and output variables Y . The latent variable
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Fig. 9: The pipeline of the proposed Uncertainty-aware Detail-Preserving Network (UADPNet), which is composed of two
stages, i.e., an Aleatoric Uncertainty Estimator (AUE) and a Segmentation Network.

(a) RGB Image (b) Deeplab v3+ [46] (c) HRNet [29] (d) UNet [30] (e) SegFormer [31] (f) Ours

Fig. 10: Visual comparison between the proposed framework and the compared methods.

is defined by the conditional distribution Pθ(z|X), and given
the joint input conditional variable X , the distribution of the
output variable Y , is obtained as Pω(Y |X, z). Additionally, the
posterior distribution of z is represented as Qϕ(z|X,Y ). The
loss function of CVAE is carefully designed to capture both
the reconstruction accuracy and the closeness of the learned
latent space to the true prior distribution. It is defined as:

LCV AE = Ez∼Qϕ(z|X,Y )[− logPω(Y |X, z)]

+DKL(Qϕ(z|X,Y )||Pθ(z|X)),
(8)

Here, Pω(Y |X, z) represents the likelihood of observ-
ing the output variable Y given the latent variable
z and the conditional variable X . The second term,
DKL(Qϕ(z|X,Y )||Pθ(z|X)), quantifies the closeness between
the learned posterior distribution Qϕ(z|X,Y ) and the prior
distribution Pθ(z|X) using the Kullback-Leibler (KL) diver-
gence. By minimizing this loss function, we aim to achieve
both accurate reconstructions and a well-regularized latent
space, enabling robust flood extraction even in noisy envi-
ronments.

Adhering to the standard CVAE paradigm, we introduce
an Aleatoric Uncertainty Estimator (AUE), whose components
are meticulously detailed as follows. Precisely, in this study,
we define Pθ(z|(X)) as the prior network, which functions
as a mapper, transforming the input image into a compressed
latent space. Here, θ represents the parameter set specific to
the prior network. Assuming identical network structures and
the availability of ground truth Y , we designate Qϕ(z|(X), Y )
as the posterior network, where ϕ comprises the parameters
exclusive to the posterior network.

As illustrated in Fig. 9, within the hidden layer networks
(both prior and posterior), we concatenate the multiple inputs

and employ three 4×4 convolution blocks, each with a stride of
2. This process transforms the concatenated inputs of X (or X
and Y in the case of the posterior network) into the latent vari-
able z, which follows a normal distribution N(µ, diag(σ2)).
Here, µ and σ belong to RK and represent the mean and
standard deviation of the latent variable, respectively. This
architecture not only preserves the essence of CVAE but also
incorporates uncertainty awareness, rendering AUE a robust
and versatile decoder.

3) Stage B: Segmentation Network: As depicted in Fig. 9,
our segmentation network follows a U-shaped design akin to
UNet. Specifically, we merge the estimated aleatoric uncer-
tainty (EU ) with X as the input to the entire network. Sub-
sequently, we employ four Multi-Scale Convolution Blocks
(MSCBs) to systematically extract four layers of encoded
features.

The MSCB structure is straightforward: it first undergoes
a 3 × 3 operation, followed by three parallel convolution
branches (with convolution kernels of sizes 3× 3, 5× 5, and
7×7) aimed at capturing features with varied receptive fields.
These branches are then subjected to dimensional reduction
and restoration via a 1 × 1 convolution, supplemented by a
residual connection to preserve the original feature informa-
tion. This four-layer MSCB processing yields four layers of
encoded features (Ei, i = 1, 2, 3, 4).

During the decoding phase, we take into account the chal-
lenges stemming from class imbalance in the dataset and
the minor inter-class disparities in images caused by low
resolution, resulting in model-level uncertainties (epistemic
uncertainty). To tackle these issues, we employ a progres-
sive decoding strategy utilizing our UAFM introduced in
UANet [36]. We leverage the uncertainty evident in the pre-
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liminary flood extraction results to guide the model’s attention
towards challenging samples with higher uncertainty during
training. This progressive methodology aims to systematically
reduce uncertainties and accomplish precise flood extraction.

Specifically, we first use a 1 × 1 convolution directly
to process E4 and output P4. Subsequently, we adopt the
uncertainty ranking algorithm from UANet [36] to measure
the uncertainty level of each pixel in the feature space and
assign different weights based on the measured uncertainty
level. In detail, we directly use the Sigmoid function to get
the corresponding probabilities of all pixels in the extraction
map P4 from spatial perspective, then we subtract all values
of the probability map with 0.5 to measure the uncertainty
belonging to foreground flood (Uf ) and meanwhile subtract
0.5 with all values of the probability map to measure the
uncertainty belonging to background (Ub):

Uf = Sigmoid(P4)− 0.5,

Ub = 0.5− Sigmoid(P4).
(9)

Subsequently, we rank the uncertainty of the foreground and
background into five levels using the URA, which is described
as:

℧(i, j) =
{

⌊ 0.5−Ui,j

0.1 ⌋, Ui,j >= 0,
0, Ui,j < 0,

(10)

where Ui,j means the pixel in the ith row and the jth column
of Uf or Ub.

Afterward, we apply URA to P4 so that we can get the
corresponding foreground uncertainty rank map (R4

f ) and
background uncertainty rank map (R4

b ). Then we directly use
E4 and E3 to multiply with them to highlight the uncertain
pixels from both the foreground and background perspectives.
Subsequently, we concatenate these enhanced features and
recover its original channel to get G3 by a 1× 1 convolution
operation, which can be described as:

G3 = Conv1×1(C(R4
f ∗ E4, R

4
b ∗ E4, R

4
f ∗ E3, R

4
b ∗ E4)),

(11)

where C is short for Concatenation and G3 is processed by
1× 1 convolution to output P3 with less uncertainty than P4.
With such a UAFM, we can utilize P4 to fuse E4 and E3 and
achieve output G3 and P3, utilize P3 to fuse G3 and E2 and
achieve output G2 and P2, and utilize P2 to fuse G2 and E1

and output P1, where P1 can be viewed as the final refined
extraction map with the lowest uncertainty.

4) Loss Function: On the whole, we use the simple binary
cross-entropy (BCE) loss function to supervise all extraction
outputs and use LCV AE to supervise the closeness of the
learned latent space to the true prior distribution in AUE. The
overall loss is:

Loss =

4∑
i=1

BCE(Pi, GT ) + λ · LCV AE , (12)

where λ is 0.01.
5) Post-Processing Strategy: To enhance the post-

processing process, we merged the predicted results of our
strategy on the test set with the designated water regions from
the land cover data. It is worth noting that we applied twelve

TABLE V: Quantitative results on the official test dataset.
Method F1 (%) Params (M) FLOPS (G)
UNet 82.093 26.637 13.196
HRNet 80.790 41.005 44.337
Deeplab v3+ 80.697 10.198 41.742
SegFormer 83.426 33.678 17.577
UNet (MSCB) 84.507 32.745 16.372
UNet++ (MSCB) 84.577 38.640 36.330
Attention UNet (MSCB) 86.033 33.678 47.978
MSCB+UAFM 87.027 5.423 23.902
MSCB+UAFM+AUE 87.170 5.942 40.485
Multi-Fusion 89.272 111.005 165.067
Multi-Fusion + Post-Processing 89.843 111.005 1,980.804

enhancements to each image in the training set by using six
rotation angles and six flip modes, effectively expanding the
dataset.

B. Results

1) Visual Comparison: As illustrated in Fig. 10, we present
an example to demonstrate the superiority of our method. It
is evident that the lower left portion of the synthetic image is
inundated with floodwaters. Nevertheless, none of the contrast
methods was able to effectively extract this flood-affected area.
Given the constraints of resolution, it becomes challenging to
precisely discern flood-prone pixel regions from the synthetic
image. However, our uncertainty-based strategy is capable of
overcoming this hurdle to a considerable extent.

2) Quantitative Comparison: As shown in Tab. V, we
compare various methods and their respective performance
metrics in terms of test accuracy and F1 score. Methods
like UNet, HRNet, Deeplab v3+, and SegFormer achieve
accuracies between 80.697% and 83.426%, indicating their ef-
fectiveness but with room for improvement. Integrating multi-
scale and attention mechanisms leads to better results. Methods
like UNet, UNet++, and Attention UNet with Multi-Scale Con-
volution Block (MSCB) show higher F1 scores, ranging from
84.507% to 86.033%. This suggests that leveraging multi-
scale features boosts model performance. Furthermore, com-
bining MSCB with techniques like UAFM and AUE further
enhances performance, with MSCB+UAFM+AUE achieving
an F1 score of 87.170%. The most significant improvement
comes from the Multi-Fusion strategy, scoring an impressive
F1 of 89.272%, indicating the benefits of fusing UADPNet
trained on different datasets and components. Finally, applying
post-processing techniques on Multi-Fusion further improves
performance, achieving the highest F1 score of 89.843%.
This underscores the importance of incorporating advanced
techniques and optimizing post-processing for optimal perfor-
mance in semantic segmentation tasks.

3) Computational Efficiency and Practical Implications:
To further evaluate model practicality, we compare F1 scores,
parameter counts, and FLOPs in Table V. Conventional
CNNs (UNet, HRNet, Deeplab v3+) and transformers (Seg-
Former) reveal diverse accuracy–efficiency trade-offs: UNet
attains 82.09% F1 with 13.20G FLOPs, while SegFormer
achieves 83.43% F1 at 17.58G FLOPs. Advanced CNN
variants (UNet++, Attention UNet) reach 84–86% F1 but
at much higher cost (up to 48G FLOPs). Our proposed
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MSCB+UAFM model achieves the best balance, reaching
87.03% F1 with only 5.42M parameters and 23.9G FLOPs.
Adding the AUE module further improves performance to
87.17% F1 at modest cost (5.94M, 40.5G FLOPs), show-
ing enhanced representation and robustness. In contrast,
ensemble-based Multi-Fusion attains the highest accuracy
(89.84%) but requires enormous computation (111M parame-
ters, 1,980G FLOPs), limiting real-world applicability. Over-
all, the proposed MSCB+UAFM(+AUE) achieves an excellent
efficiency–accuracy trade-off, enabling rapid and scalable op-
tical flood mapping.

C. Discussion

From the results of the two tracks, it can be observed that
the overall performance in the optical track is higher than in
the SAR track. This difference can be attributed to both the
scale of the datasets and the intrinsic imaging principles of
the sensors. The optical dataset provides richer spectral and
textural information, which facilitates learning discriminative
features for flood detection. In contrast, SAR data are affected
by speckle noise, geometric distortions, and complex backscat-
tering mechanisms, including specular reflection over smooth
water surfaces, volume scattering from vegetation, and double-
bounce scattering in built-up or flooded areas. These factors
increase the difficulty of accurate segmentation in the radar
domain and partially explain the performance gap between
optical and SAR-based methods.

During the 2024 IEEE GRSS Data Fusion Contest, we
addressed uncertainty issues and adopted effective strategies
at both the data and model levels, resulting in high-precision
and low-uncertainty flood mapping. Consequently, our method
achieved first place in Track 2 of the contest [48]. In future
work, we aim to further investigate approaches for achieving
high-precision flood extraction on a global scale.

VI. TRACK 2 - SECOND PLACE: TEAM BODANG1220

A. Method

Floods are among the most impactful natural disasters,
causing significant human and environmental consequences
[49]–[52]. Advances in remote sensing and deep learning have
enabled effective flood detection using multi-spectral imagery,
particularly from Harmonized Landsat Sentinel-2, which offers
valuable spatial and temporal resolution. However, challenges
such as cloud interference, limited resolution, and complex
surface features hinder accurate flood mapping. To address
these, we propose a domain knowledge-aware framework
based on the Remote Sensing Foundation Model (RSFM), as
shown in Figure 11. Our method enhances image resolution,
integrates spatial texture features with the Automatic Water
Extraction Index (AWEI) to distinguish flood areas, and em-
ploys model ensembles and knowledge-driven post-processing
to improve prediction accuracy and reliability.

1) Flood Segmentation Training: In consideration of the
original Harmonized Landsat Sentinel-2 images’ limited spa-
tial resolution of 30m, each image presents with a dimension
of merely 128×128 pixels. To more effectively mine spatial
detail features from these images via deep learning models,

we utilize the image super-resolution method SRCNN [53],
thereby expanding the size of the images in the RGB band by
4 × and significantly enhancing their visual clarity. Despite
a certain degree of spectral information loss in the processed
images, the implementation of the super-resolution strategy
effectively recovers the critical details that are commonly
overlooked at lower resolutions, thereby playing a pivotal
role in achieving accurate flood mapping. Concurrently, we
upsample the original flood labels to align with the new image
size, thereby establishing pixel-level image-label pairs.

Our performance in the first validation phase led us to
adopt a semantic segmentation network based on an encoder-
decoder architecture for training. Specifically, we utilize the
Swin Transformer (SkySense pre-trained [54]) model [43] as
the encoder to extract high-dimensional image features. For
the decoder, we used the Mask2former [55] architecture to
reconstruct the flood segmentation map. During the training
process, we optimized our segmentation network using the
cross-entropy loss function.

2) Domain Knowledge-enhanced Inference: During the in-
ference phase, we employ a divide-and-conquer approach,
leveraging both a trained segmentation model and an exponen-
tial threshold-based model to focus on detailed spatial details
and rich spectral information in the images. Specifically, we
use the trained model F to process the super-resolved RGB
images x4h×4w×3

super , resulting in the flood prediction probability
P1. Simultaneously, we calculate the AWEI using the spectral
information from the original multi-spectral images xh×w×7,
including B2, B3, B8, B11, and B12 bands, and normalized
it (using Norm(·)) to obtain the flood prediction probability
P2. By introducing an adjustable parameter α, we weigh the
fusion of P1 and P2 to generate the fused flood segmentation
map Yfused:

P1 = F (x4h×4w×3
super ), (13)

AWEI = B2 + 2.5×B3− 1.5× (B8 +B11)− 0.25×B12,
(14)

P2 = Norm(AWEI), (15)

Yfused = αP1 + (1− α)P2. (16)

3) Knowledge-based Processing: Due to the susceptibility
of optical imagery to cloud cover and the complex surface
features typically found in flood-prone areas, relying solely
on optical remote sensing imagery for flood detection is often
insufficient. Therefore, we incorporated prior knowledge from
ESA WorldCover and Copernicus DEM to develop two rules
for further processing of the fused flood segmentation map.
The specific rules are as follows: 1. Regions classified as
“Permanent water bodies” and “Wetlands” in ESA WorldCover
are considered as “Flood”. 2. Regions classified as “Bare
vegetation” in ESA WorldCover and with a Copernicus DEM
value greater than 20 unit are considered as “Non-flood”.

Our approach integrates knowledge rules derived from
expert insights and hydrological principles. These guiding
criteria take into account known water body extents and
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Fig. 11: The overview block diagram of the proposed domain knowledge-aware framework based on the RSFM.

terrain characteristics associated with flood occurrence, pro-
viding extra information for our predictions. Through this
diversified approach, we generate flood predictions that are not
solely driven by remote sensing imagery, but also incorporate
domain-specific knowledge. Our method ultimately produces
high-precision outputs that reflect the subtle interplay between
model predictions and historical data, with the potential to sig-
nificantly enhance flood management and response strategies.

To further incorporate domain knowledge into the RSFM,
we utilize the post-processed flood segmentation map as
pseudo-labels and iteratively feed it into the segmentation net-
work for further training, aiming to enhance the performance
of the segmentation model.

B. Results

1) Implementation Details: We select the Swin Trans-
former branch from the previously proposed RSFM, SkySense,
as the encoder, and employ Mask2former as the segmentation
decoder. The segmentation model is trained using the AdamW
optimizer, with a base learning rate of 6e-5 and a batch size
of 4, on 4 NVIDIA A100 40G GPUs. During the training
phase, the main data augmentation strategies employed were
random resizing, random cropping, and random flipping. In
the inference phase, the value of α is initialized to 0.2. For
the re-training process, we perform three iterations, gradually
increasing α to 0.8 as the number of iterations increased.

2) Ablation Study: Table VI presents the results of our
ablation experiments. Our best F1-score achieved is 88.25%
(Exp. VIII). It can be observed that relying solely on the orig-
inal training set yielded unsatisfactory segmentation perfor-
mance (Exp. III). However, incorporating domain knowledge

Fig. 12: Visualization of inference maps.

enhancement significantly improves the performance (Exp.
V). Furthermore, employing a post-processing strategy based
on knowledge rules further enhanced the overall accuracy
of the flood segmentation maps (Exp. VI and VII). As
the segmentation network is iteratively trained with domain
knowledge, its performance becomes competitive (Exp. VIII).
These experimental results demonstrate the effectiveness of
the components in our approach. As shown in Fig. 12, the
visualized flood detection results also verify the effectiveness
of our method.
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TABLE VI: The details of our ablation study.

ID Method Development phase (F1) Test phase (F1)

I Vision Transformer∗ + UperNet 0.931 -
II Image Super-resolution + Swin Transformer∗ + UperNet 0.948 -
III Image Super-resolution + Swin Transformer∗ + Mask2Former 0.95363 0.75386

IV Image Super-resolution + Swin Transformer∗ + Mask2Former
+ Domain knowledge-enhanced inference (NDWI ,α=0.8) - 0.75958

V Image Super-resolution + Swin Transformer∗ + Mask2Former
+ Domain knowledge-enhanced inference (AWEI, α=0.2) - 0.83426

VI
Image Super-resolution + Swin Transformer∗ + Mask2Former
+ Domain knowledge-enhanced inference (AWEI, α=0.2)
+ Knowledge-based processing (Rules 1) + Re-train#1

- 0.85649

VII
Image Super-resolution + Swin Transformer∗ + Mask2Former
+ Domain knowledge-enhanced inference (AWEI, α=0.65)
+ Knowledge-based processing (Rules 1 & 2) + Re-train#2

- 0.87582

VIII
Image Super-resolution + Swin Transformer∗ + Mask2Former
+ Domain knowledge-enhanced inference (AWEI, α=0.8)
+ Knowledge-based processing (Rules 1 & 2) + Re-train#3

- 0.8825

C. Discussion
This study aims to develop a domain knowledge-aware

framework based on the RSFM for extracting flood informa-
tion from multi-spectral remote sensing images, with the goal
of improving the accuracy and robustness of flood detection
[56]. By using advanced semantic segmentation models, lever-
aging spectral information with the AWEI, and incorporating
prior knowledge, we achieve competitive results. Experimental
results demonstrate the effectiveness of our approach. In the
future, we plan to further improve segmentation accuracy by
using pre-trained backbones on remote sensing imagery, and
attempt to embed domain knowledge into the training loss
function of the segmentation model.

VII. CONCLUSION

Rapid advancements in Earth observation sensing modali-
ties, coupled with advances in machine learning and computer
vision can deliver significant improvements for tasks such as
segmentation, object detection, etc. These can play a critical
role in tasks of significant societal importance, such as rapid
flood mapping in flood emergency response and management.
The DFC24 challenge disseminated a unique testbed dataset
for rapid flood mapping that is based on SAR and passive
optical imagery, and promoted research on advancing flood
detection capability. The winning teams leveraged variants
of convolutional semantic segmentation networks, Siamese
networks, uncertainty estimators and appropriate data pre-
processing to advance segmentation with the end goal of
rapid flood detection. We envision the data to continue to be
useful in years to come to further algorithmic advances that
can effectively leverage passive optical and SAR imagery for
robust and rapid flood detection.
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N. Yokoya, R. Hänsch, and B. Le Saux, “Advanced multi-sensor optical
remote sensing for urban land use and land cover classification: Outcome
of the 2018 ieee grss data fusion contest,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 12,
no. 6, pp. 1709–1724, June 2019.

[12] S. Kunwar, H. Chen, M. Lin, H. Zhang, P. Dangelo, D. Cerra, S. M.
Azimi, M. Brown, G. Hager, N. Yokoya, R. Hansch, and B. Le Saux,
“Large-scale semantic 3d reconstruction: Outcome of the 2019 ieee grss

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2026.3652462

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.sciencedirect.com/science/article/pii/S0034425724003997


IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 14

data fusion contest - part a,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, pp. 1–1, 2020.

[13] Y. Lian, T. Feng, J. Zhou, M. Jia, A. Li, Z. Wu, L. Jiao, M. Brown,
G. Hager, N. Yokoya, R. Hansch, and B. Le Saux, “Large-scale semantic
3d reconstruction: Outcome of the 2019 ieee grss data fusion contest -
part b,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, pp. 1–1, 2020.

[14] C. Robinson, K. Malkin, N. Jojic, H. Chen, R. Qin, C. Xiao, M. Schmitt,
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