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Abstract

Traditional Remote Sensing Foundation models (RSFMs)
are pre-trained with a data-centralized paradigm, through
self-supervision on large-scale curated remote sensing
data. For each institution, however, pre-training RSFMs
with limited data in a standalone manner may lead to
suboptimal performance, while aggregating remote sensing
data from multiple institutions for centralized pre-training
raises privacy concerns. Seeking for collaboration is a
promising solution to resolve this dilemma, where multiple
institutions can collaboratively train RSFMs without shar-
ing private data. In this paper, we propose a novel privacy-
preserved pre-training framework (FedSense), which en-
ables multiple institutions to collaboratively train RSFMs
without sharing private data. However, it is a non-trivial
task hindered by a vicious cycle, which results from model
drift by remote sensing data heterogeneity and high com-
munication overhead. To break this vicious cycle, we intro-
duce Federated Mutual-guidance Learning. Specifically, we
propose a Server-to-Clients Guidance (SCG) mechanism to
guide clients updates towards global-flatness optimal solu-
tions. Additionally, we propose a Clients-to-Server Guid-
ance (CSG) mechanism to inject local knowledge into the
server by low-bit communication. Extensive experiments
on four downstream tasks demonstrate the effectiveness of
our FedSense in both full-precision and communication-
reduced scenarios, showcasing remarkable communication
efficiency and performance gains.

1. Introduction
Recently, Remote Sensing Foundation Models (RSFMs)
have gained increasing attention due to their impressive
applicability and performance across various Earth Ob-
servation tasks by producing general-purpose visual fea-
tures [37, 48]. Traditionally, existing RSFMs follow a
data-centralized training paradigm. They are built through
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Figure 1. Illustration of privacy-preserved pre-training of
RSFMs with FL to bridge data islands. The vicious cycle be-
tween data heterogeneity-induced model drift and communication
bottlenecks reveals a critical performance-efficiency trade-off.

self-supervision on large-scale curated remote sensing data,
gathered from diverse sources [10]. These data are collected
by satellites, drones, or aerial platforms, and are stored in
centralized archives by different institutions. A single in-
stitution could not pre-train RSFMs well due to the lim-
ited data scale and diversity [22]. At the same time, it
is challenging to aggregate data from multiple institutions
for data-centralized training due to geo-information secu-
rity, storage bottlenecks, and industrial competitions [3, 14,
33, 38]. Such contradictory requirements urgently demand
paradigm-shifting frameworks that reconcile computational
synergies.

A more practical and realistic solution is to collabora-
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tively inject remote sensing knowledge learned from pri-
vate data owned by institutions into foundation models in
a distributed manner [8, 13, 20, 34, 35]. In recent years,
federated learning (FL) emerges as a promising privacy-
preserving alternative, enabling collaborative model train-
ing without raw data exchange through periodic model ag-
gregation [12, 25]. Self-supervised learning (SSL) oper-
ates on the principle of latent structure exploitation, where
models learn transferable representations by solving pretext
tasks derived from data’s intrinsic attributes without hu-
man annotations. However, it is a non-trivial task to train
RSFMs by combining SSL with FL directly [9]. Recent
studies in federated self-supervised learning (FSSL) mainly
focus on natural images, showing potential for distributed
visual representation learning. MocoSFL [18] focus cross-
device SSL by leveraging momentum contrast on mobile
devices. FedU2 designs disperses local data representations
uniformly using spherical Gaussian sampling and optimizes
global-local model consistency. FedMKD [19] proposes a
resource-adaptive FSSL to address the architecture hetero-
geneity and class skew issues. However, few studies have
explored the vicious cycle challenge in FSSL, which mani-
fests more severely in remote sensing [2, 15, 41].

To elaborate, two critical challenges are involved in this
vicious cycle, as illustrated in Fig. 1. 1 model drift by
data heterogeneity. Remote sensing data is inherently het-
erogeneous due to diverse sensor types, resolutions, and
geographic distribution. This heterogeneity leads to sig-
nificant variability in data distributions across different in-
stitutions, causing convergence inefficiencies and degraded
model performance [3]. 2 high communication overhead.
Foundation models are characterized by massive param-
eters (unlike neural networks with shallow architectures),
leading to excessive communication costs and bandwidth
demands [24]. The two challenges form a vicious cycle,
where data heterogeneity necessitates more frequent model
synchronization to mitigate drift, thereby amplifying com-
munication costs. Conversely, communication compression
can reduce overhead, introducing noise and information
loss which further exacerbates client-side model drift. This
bidirectional aggravation fundamentally undermines the ef-
ficiency and model consistency in distributed pre-training
of RSFMs with FL.

In this paper, we propose a new challenging yet mean-
ingful task: privacy-preserved pre-training of RSFMs.
We propose FedSense, a novel FSSL framework with Fed-
erated Mutual-guidance Learning, to address the vicious cy-
cle challenges. First, we introduce a Server-to-Client Mu-
tual Guidance (SCG) mechanism to guide client models to-
wards a global consensus, mitigating model drift by data
heterogeneity. Second, we propose a Client-to-Server Guid-
ance (CSG) mechanism to distill client models’ knowledge
into a server-side reference model, reducing communica-

tion overhead. Our FedSense provides an integrated solu-
tion to resolve the vicious cycle challenges. As a result,
our FedSense achieves state-of-the-art performance com-
pared to existing FSSL methods with higher performance
and lower communication overhead.

To sum up, this paper takes the first step towards privacy-
preserved pre-training of RSFMs as far as we know. The
main contributions of this work are as follows:
• We propose FedSense, establishing a new paradigm for

privacy-preserved pre-training of RSFMs. To the best
of our knowledge, it is the first generic FL framework
that supports mainstream pre-training methods, including
contrastive learning and masked image modeling.

• We resolve the vicious cycle challenges in FSSL by in-
troducing Federated Mutual-guidance Learning, which is
composed of Server-to-Client Mutual Guidance (SCG)
mechanism and Client-to-Server Guidance (CSG) mecha-
nism. The integrated solution effectively mitigates model
drift by data heterogeneity and reduces communication
overhead.

• We pre-train a RSFM with 10 participants with million-
scale remote sensing data and evaluate the performance
on four downstream tasks. Experimental results on eight
datasets demonstrate that FedSense outperforms existing
FSSL methods in terms of performance and communica-
tion overhead.

2. Related Work

2.1. Centralized Pre-training for RSFMs

Recent years have witnessed significant progress in data-
centralized pre-training paradigms for RSFMs [21, 26].
A series of studies focus on constructing large-scale pre-
training datasets and developing specialized algorithms
tailored to remote sensing data characteristics. For in-
stance, [9] introduced a rotation-variable window attention
mechanism to handle large-scale and arbitrarily oriented
geospatial objects, accompanied by MillionAID, a billion-
parameter vision foundation model pre-trained on massive
remote sensing imagery. To address dense object detec-
tion challenges in remote sensing, RingMo [36] optimized
a masked autoencoder framework by incorporating multi-
scale hierarchical representations and task-specific decod-
ing strategies. For multispectral data with rich spectral in-
formation, SpectralGPT [11] treated multispectral images
as 3D tensors and proposed a multi-objective reconstruc-
tion loss to jointly capture spatial-spectral correlations and
spectral sequence dependencies. SkySense [10] further ex-
tended multimodal capabilities through spatiotemporal dis-
entanglement and temporal-aware embedding mechanisms,
enabling joint contrastive learning across high-resolution
optical imagery, and time-series optical/SAR data. This uni-
fied framework supports diverse tasks ranging from image-
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Figure 2. Overview of FedSense. The framework includes two components: Server-to-Clients Guidance (SCG) and Clients-to-Server
Guidance (CSG). SCG guides clients’ updates towards global-flatness optimal solutions, while CSG injects local knowledge into the server
by low-bit communication.

level classification to pixel-level segmentation and crop
phenology monitoring. AnySat [1]is a versatile model de-
signed to handle diverse data across resolutions, scales, and
modalities.

Different from the above studies, our work takes the first
step on privacy-preserved pre-training for RSFMs, and we
aim to collaboratively pre-train RSFMs in a novel decentral-
ized manner. This research is orthogonal to the existing cen-
tralized pre-training methods tailored to RSFMs, and would
be complementary to scale up the performance of RSFMs in
real-world applications.

2.2. Federated Self-Supervised Learning

Federated Learning (FL) [17, 29] has emerged as a promis-
ing paradigm for collaborative model training across decen-
tralized data sources while preserving data privacy. Fed-
erated self-supervised learning (FSSL) [30, 46, 49] have
demonstrated potential for privacy-preserving model train-
ing. However, existing FSSL methods predominantly ad-
dress cross-device scenarios characterized by numerous
resource-constrained clients (e.g., mobile devices) with ho-
mogeneous data distributions, focusing on computational
efficiency and communication compression. While L-
DAWA [31] mitigates data heterogeneity through hierar-
chical angular divergence weighting, and FedU2 [23] and
FedMKD [19] enhance representation consistency via uni-
fied embedding alignment and adaptive knowledge distilla-
tion, these methods remain inadequate for cross-institution
pre-training of RSFMs.

Existing FSSL focuses on optimizing federated model
convergence and mainly support cross-device scenarios [16,
27, 39]. Additionally, these methods are with limited ap-
plicability to support self-supervised learning frameworks
(contrastive learning and masked image modeling) consis-
tently. Thirdly, these methods ignore the vicious cycle in
collaboratively pre-training RSFMs, which requires han-
dling the drift challenges and communication efficiency si-
multaneously. Our work sheds lights on these limitations
and proposes Federated Mutual Learning to unleash the
power of FSSL for RSFM pre-training.

3. Methodology
3.1. Problem definition
An FL framework for privacy-preserving collaborative pre-
training of RSFMs aims to learn general-purpose visual rep-
resentations from distributed unlabeled remote sensing im-
ages. The system comprises M institutions (i.e. clients)
and a central server. Let the m-th client cm possess a pri-
vate unlabeled dataset Dcm , and server s maintain a public
unlabeled dataset Ds. For each client cm, the local self-
supervised objective function Fcm with parameters θm can
be formulated as:

min
θm
Fcm = Ex∼Dcm

[
ψ
(
fθm(x(a)), fθm(x(b))

)]
, (1)

where x(a) and x(b) are view augmentations or masked
modeling of input image x, and ψ(·, ·) denotes the self-
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supervised loss function. For contrastive learning, ψ mea-
sures feature consistency between augmented views. For
masked modeling, ψ computes the reconstruction error be-
tween predicted and original pixel values in masked regions.
In the t-th round, upon receiving {θ(t)m }Mm=1, server s with
public data Ds applies aggregation Θ(t) =

∑M
m=1 pmθ

(t)
m ,

where pm =
|Dcm |∑M

m=1 |Dcm | . The optimization objective is:

min
Θ
Fs = Exs∼Ds

[
ϕ(Θ, {θ(t)m }Mm=1, · · · , xs)

]
, (2)

where xs is unlabeled remote sensing data sampled from
the public dataset, and ϕ denotes the loss function further
to inject public data knowledge into the global foundation
model.

3.2. Overview of our FedSense
As shown in Fig. 2, our FedSense consists two parts,
which are Server-to-Clients Guidance (SCG) and Clients-
to-Server Guidance (CSG). The two components are intro-
duced sequentially. We propose a federated self-supervised
learning framework for collaborative training of foundation
models across multiple institutions. Note that we omit the
conversion between gradients and parameters during trans-
mission for conciseness. The algorithm is detailed in Algo-
rithm 1.

3.3. Server-to-Clients Guidance
The core insight of SCG is to strike a balance between
global knowledge preservation and local model optimiza-
tion. The server guides clients to optimize their local
models while restrict the discrepancy of local and global
model. We design a dual loss: self-supervised loss and self-
stabilized loss in Eq. (7), which are complementary to each
other. The former requires models to learn orthogonality to
the discrepancy of local and global model, while the latter
helps to regularize the model with stabilized knowledge in-
formation in federated updates. Thus, the overall training
target of the m-th client is:

Ltotal
m = Lssl

m(θm; Θ; ϵ;RC(θm))︸ ︷︷ ︸
self-supervised term

+Lsst
m(θm; θuni)︸ ︷︷ ︸

self-stablized term

, (3)

where Lssl
m denotes self-supervised loss. It corresponds to

SSL objectives commonly used in the field, such as con-
trastive loss, and masked reconstruction loss. Note that this
is a drift-aware loss incorporated with our proposed opti-
mizing method. We conclude it as the following minimax
optimization problem:

min
θm

max
|ϵ|2<ρ

Ldisc
m (θm + ϵ, fθm(x(a)), fθm(x(b))), (4)

The objective of the weight perturbation on the client-side
is to find the ϵ, which causes the maximum increase in the

parameter discrepancy. Given local model θm and global
model Θ, the parameter discrepancy is calculated by:

∇θmLdisc
m (θm; Θ) = ∇θm(β(θm −Θ)), (5)

where β is a hyperparameter to of the discrepancy term.
Then, the optimal perturbation ϵ is approximated by:

ϵ̃ = argmaxLdisc
m (θm + ϵ; Θ) ≈ λ ∇θmLdisc

m (θm; Θ)

∥∇θmLdisc
m (θm; Θ)∥2

,

(6)
where λ is a scaling factor. The optimal perturbation ϵ will
be later used to update the local model θm.

Moreover, the self-stabilized loss Lsst
m is designed

to leverage the knowledge from a universal encoder,
fθuni , which is pre-trained on a large-scale dataset (e.g.,
ImageNet-22k) and broadcast to all clients by the server
at the beginning of the federated learning process. It
guides the client-specific encoder to output representations
that align with the universal encoder. Formally, the self-
stabilized loss can be defined as:

Lsst
m = Ex∼Dm

[
− fθm(x)

∥fθm(x)∥2
· funi(x)

∥funi(x)∥2

]
, (7)

where Dm denotes the local dataset of client m. fθuni and
fθm are the feature extractors of the universal encoder and
the client-specific encoder, respectively. Lastly, the optimal
perturbation ϵ is then used to update the local model θm:

θm ← θm − γ∇θmLtotal
m (θm + ϵ; Θ), (8)

where γ is the learning rate. In this way, the server guides
the clients to optimize their local models while preserving
the global knowledge with orthogonal property and stabi-
lized information.

3.4. Clients-to-Server Guidance
As the model size and number of clients increases, the com-
munication overhead becomes a more serious bottleneck.
The clients need to transmit the updates to the server in
each communication round, and waiting for the server for
aggregation and send back the updated parameters.

For the uplink communication is the most time-
consuming part in this process, we propose a CSG mech-
anism to reduce the communication cost. Though quanti-
zation is a widely used technique to reduce the communi-
cation cost. However, it inherently introduces quantization
error and information loss, which may accumulate over time
and degrade the model performance. To guide the server to
aggregate the quantized updates from clients, we propose a
feedback error mechanism to compensate the quantization
error.

Assume the feedback error at the t-th round is etm, it is
added to compensate updates of each client:

Gt+1
m = ∆θtm + etm, (9)
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Algorithm 1: Our FedSense
Input : T : communication round; M : number of

clients; E: local epochs;
Output: Weight ΘT of the RSFM at the T -th round.

1 Server-side:
2 Initialize global model Θ0

3 for t = 1 to T do // the t-th round
4 Server broadcast Θt−1 to selected clients
5 for each client cm ∈ {cm}Mm=1 in parallel do
6 Server-to-Clients Guidance (SCG)
7 end
8 {∆θtm}Mm=1 = DCPR{{∆θ̃tm}Mm=1; b}
9 Θt ← ServerAggregation({∆θtm}Mm=1)

10 Clients-to-Server Guidance (CSG)
11 Similarity alignment with public data Eq. (18)
12 end
13 Client-side:
14 Initialize local model θt−1

m ← Θt−1

15 for e = 1 to E do // the e-th epoch
16 Server-to-Clients Guidance (SCG)
17 Optimization with knowledge preservation
18 θm ← θm − γ∇θmLtotal

m (θm + ϵ; Θ) Eq. (8)
19 end
20 ∆θ̃tm = CPR{(θtm − θt−1

m ); b}
21 Send the updates ∆θ̃tm back to the server.
22 Downstream tasks: Institutions utilize the

pre-trained model as a backbone, fine-tuning it on
labeled data for specific tasks.

where ∆θtm is the updates of client m at round t. The quan-
tized updates are computed as follows:

G̃t+1
m [i] = ||Gt+1

m ||︸ ︷︷ ︸
L2 norm of
raw updates

· sgn(Gt+1
m [i])︸ ︷︷ ︸

sign of element
(1 bit)

· ξ(Gt+1
m [i]; s)︸ ︷︷ ︸

unbiased stochastic
function(b − 1 bits)

, (10)

where ξ(·) is a unbiased stochastic function mapping
|Gt+1

m [i]|/||Gt+1
m || to the quantization level s.

etm = Gtm − DCPR
(
G̃tm; b

)
, (11)

where DCPR is the dequantization function. The feedback
error is updated by:

etm = α · et−1
m + (1− α) · etm , (12)

where α is the momentum factor, and b is the bit-width of
quantization. The feedback error is accumulated over time
to preserve the gradient information across communication
rounds. Inspired by the dynamic optimization characteris-
tics of neural network training [44], we implement periodic
feedback error resetting to address the fast-evolving loss

landscape. We reset the feedback error to zero at the fre-
quency of Treset rounds to ensure the feedback error remains
aligned with the current optimization state.

On the server side, we propose federated similarity dis-
tillation to provide public remote sensing data guidance.
Our FedSense consists of three core steps: server-side ag-
gregation, local model clustering, and cross-model knowl-
edge distillation. In this way, clients can leverage the pub-
lic data to enhance the global model performance. The
server aggregates client models {θm}Mm=1 using data vol-
ume weights. They are clustered into K groups via K-
means to accelerate multi-model forward pass cost and mit-
igate the bias of some models:

{θ(k)}Kk=1 = K-means({θm}Mm=1). (13)

For each public batch B = {xi}pi=1, the group of models
produce feature matrices:

Z(k) = [z
(k)
1 , . . . , z(k)p ]⊤ ∈ Rp×d, (14)

Zg = [zg1 , . . . , z
g
p ]

⊤ ∈ Rp×d, (15)

where z(k)i = fθ(k)(xi) and zgi = fθg (xi), and p and d
are the batch size and feature dimension, respectively. The
similarity matrices are computed as:

S(k) =
Z(k)(Z(k))⊤

∥Z(k)∥F
, Sg =

Zg(Zg)⊤

∥Zg∥F
. (16)

The weighted consensus similarity combines local exper-
tise:

Sconsensus =

N∑
k=1

ωkS
(k), ωk =

|Dk|∑N
i=1 |Di|

. (17)

The global model is optimized by matching similarity dis-
tributions:

Ldistill =
1

p2
∥Sg − Sconsensus∥2F . (18)

By distilling the similarity knowledge from multiple mod-
els, the global model can learn to capture the intrinsic struc-
ture of the public data, which is beneficial for enhancing the
generalization ability of the global model.

4. Experiments
4.1. Federated Experimental Setups
Distributed Pre-training datasets. A distributed dataset
was constructed for federated pre-training of RSFMs, com-
prising 10 clients with heterogeneous private remote sens-
ing data and supplementary public datasets maintained by
a server (Fig. 3). Notably, the dataset includes satellite im-
ages (e.g. WorldView-2 and JL-1) and aerial images (e.g.
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Figure 3. Details of federated pre-training datasets. The dataset
consists of 10 clients with million-scale heterogeneous private re-
mote sensing data and public datasets maintained by a server.

NAIP and NOAA), while some institutions possess multi-
sourced collections, featuring heterogeneous sensor config-
urations and spatial resolutions ranging from 0.25m to 25m.
The coverage spans diverse geographical regions including
global, USA, and China. Such heterogeneity across data
volume, geographic distribution, resolution variance, and
platform diversity establishes a representative million-scale
dataset that simulates real-world scenarios.
Downstream tasks. We conducted experiments on four
typical downstream tasks of remote sensing image anal-
ysis to validate the effectiveness of the RSFM pretrained
by our FedSense. These tasks include: scene classifica-
tion (RESISC-45 [6], AID [42]); semantic segmentation
(Inria [28], LoveDA [40]); object detection (DIOR-R [7],
DOTA-v1.0 [43]); and change detection (LEVIR-CD+ [5],
SECOND [47]). More details of the datasets are shown in
Sec. C of the supplementary.
Evaluation metrics. For scene classification, we emply
overall accuracy (OA) as the evaluation metric. We use
mean intersection over union (mIoU) for multi-class se-
mantic segmentation tasks and IoU for binary segmentation
tasks. For object detection, we use mean Average Precision
(mAP) and F1 score for change detection tasks. For seman-
tic change detection, we use semantic change segmentation
score (SCS) as the evaluation metric.
Implementation details. To systematically evaluate the
universality of our framework, we establish a comprehen-
sive evaluation framework incorporating two mainstream
SSL paradigms: contrastive learning through DINO [4],
and masked image modeling via SimMIM [45]. All experi-
ments employ the tiny version of Swin Transformer (Swin-
T) as the foundational backbone unless explicitly stated,
with consistent training protocols (100-round pre-training,

AdamW optimizer, 1e-4 base learning rate).

4.2. Comparison with State-of-the-Art Methods
In this section, we present a comparative analysis of perfor-
mance on four downstream tasks using RSFM pre-trained
by our FedSense and other state-of-the-art FSSL. The re-
sults are summarized in Tab. 1. We observe that our Fed-
Sense outperforms existing methods across almost all tasks,
achieving an average improvement of 1.3% OA on scene
classification, 1.1% mIoU on semantic segmentation, 0.9%
mAP on object detection, and 0.8% F1 on change detection.
Note that due to not using public dataset in the original pa-
per, we conduct experiments by averagely integrate public
datasets to the federated pre-training dataset for a fair com-
parison with existing methods with the same number of to-
tal samples. To elaborate, we provide detailed comparisons
with existing methods.

Our experimental results reveal several key observa-
tions. The randomly initialized model yields inferior perfor-
mance across all downstream tasks, demonstrating Trans-
formers’ inherent limitation in learning effective represen-
tations from limited labeled data. ImageNet supervised pre-
training brings significant improvements (e.g., +14.36% on
RESISC-45), validating the importance of pre-training for
vision transformers. However, the domain gap between nat-
ural images and top-down remote sensing views limits fur-
ther performance gains, motivating our FL approach.

Among FSSL methods, most approaches (FedEMA,
FedMKD) achieve moderate improvements over ImageNet
pretraining, confirming that collaborative pretraining with
distributed data can inject domain-specific knowledge. No-
tably, FedU2 exhibits performance degradation compared
to ImageNet pretraining, suggesting its vulnerability to
data heterogeneity and insufficient utilization of pre-trained
knowledge. Our FedSense consistently outperforms SSL-
FL, achieving absolute gains of 1.12% and 1.37% on
RESISC-45 and AID for scene classification. When using
DINO framework, our FedSense maintains advantages with
0.87% and 0.26% improvements, respectively.

For semantic segmentation, FedSense achieves 0.85%
OA improvement on Inria and 1.07% gain on LoveDA
over the best competitor. The marginal differences un-
der DINO framework (0.12%-0.35%) suggest contrastive
learning brings limited benefits for segmentation tasks that
require precise pixel-level localization. In rotated object
detection, FedSense with SimMIM framework surpasses
SOTA by 1.50% and 0.51% on DIOR-R and DOTA-v1.0,
while maintaining competitive performance (+0.11% mAP)
with DINO-based approaches.

Additionally, the 1-bit quantized version of FedSense
demonstrates remarkable communication efficiency with
minimal performance degradation (0.23% across tasks).
Quantized FedSense slightly outperforms full-precision
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Framework Method
RESISC-45 AID Inira LoveDA DIOR-R DOTA-v1.0 LEVIR-CD+ SECOND

OA OA IoU OA mIoU mAP mAP Precision Recall F1 SCS

Swin-Tiny
Random Init. 80.09 72.84 79.41 90.21 42.83 46.86 64.45 69.71 63.39 66.40 30.95

ImageNet Sup. 94.45 96.36 80.65 93.16 51.52 64.37 76.90 73.26 71.44 72.34 34.79

SimMIM [45]
(Swin-Tiny)

SSL-FL [46] 95.21 96.17 81.33 93.43 51.67 64.01 76.82 74.31 70.99 72.61 33.98
FedEMA [49] - - - -
L-DAWA [31] - - - -
FedU2 [23] - - - -

FedMKD [19] - - - -
96.33 97.54 81.66 94.28 52.74 65.51 77.33 74.82 71.67 73.21 35.43

Our FedSense
96.01 96.68 80.97 93.45 51.91 64.53 76.76 73.98 71.59 72.77 34.87

DINO [4]
(Swin-Tiny)

SSL-FL [46] - - - -
FedEMA [49] 94.91 97.04 80.21 92.98 51.89 64.93 77.09 73.63 71.20 72.39 34.82
L-DAWA [31] 94.23 96.27 80.82 93.33 51.68 65.08 77.24 74.18 71.82 72.98 34.97
FedU2 [23] 93.85 95.76 80.13 92.59 51.34 64.03 75.88 73.30 70.67 71.96 33.27

FedMKD [19] 95.34 97.17 80.84 94.14 51.99 65.44 77.56 74.36 73.05 73.70 35.11
96.21 97.43 81.96 94.23 51.95 65.40 77.64 74.98 73.13 74.04 35.34

Our FedSense
95.88 97.23 80.97 93.88 51.14 64.62 77.45 73.88 73.09 73.48 35.82

Table 1. Comparison results of our FedSense and previous SOTA methods. The symbol (-) indicates unavailable results where methods
are incompatible with specific SSL framework types. Results highlighted in yellow denote full-precision communication performance of
our FedSense, while blue shading represents experiments with 1-bit communication-quantized transmission, demonstrating our method’s
efficiency-accuracy trade-off. The best results are highlighted in bold, and the second-best results are underlined.

baselines on SECOND dataset (+0.06% SCS), which we
conjecture stems from the error-compensated quantization
acting as implicit regularization. This makes FedSense par-
ticularly suitable for bandwidth-constrained applications.

These results collectively demonstrate that our Federated
Mutual-guidance Learning framework effectively coordi-
nates distributed clients to learn transferable representations
while maintaining communication efficiency. The consis-
tent improvements across diverse tasks validate FedSense’s
ability to capture domain-specific patterns from unlabeled
remote sensing data through federated collaboration.

4.3. Ablation Studies
In this part, we conduct ablation studies to analyze the sys-
tem scalability, model scalability, effectiveness of compo-
nents, and parameter analysis of our proposed FedSense.

System Scalability Analysis. To assess our framework’s
adaptability to real-world distributed scenarios, we sys-
tematically investigate how model performance scales with
increasing participants and training samples. As shown
in Tab. 2, expanding from 2 to 10 collaborative clients
(80K to 800K samples) yields consistent performance gains
across all tasks. For RESISC-45 and DIOR-R, the perfor-
mance improvements scale nearly linearly with client/sam-
ple quantities, suggesting these tasks particularly benefit
from diverse perspectives in FedSense. However, LoveDA
exhibits marginal gains despite 10× sample growth, indicat-
ing pixel-level tasks require more sophisticated feature ag-
gregation beyond simple data scaling. These findings con-
firm our framework’s effectiveness in harnessing distributed
resources.

#CL #TS
RESISC-45 LoveDA DIOR-R LEVIR-CD+

OA mIoU mAP F1

2 80K 94.50 51.56 64.43 72.44

4 200K 95.23 51.86 64.75 72.68

8 650K 95.85 52.33 65.16 73.00

10 800K 96.33 52.74 65.51 73.21

Table 2. Number of participants impact analysis. #CL means
the number of participants. #TS means number of total participat-
ing samples.

Model Scalability Analysis. The impact of model ca-
pacity is systematically evaluated through progressively
larger Swin Transformer variants, as detailed in Tab. 3.
While all tasks benefit from increased model parameters,
we observe distinct scaling patterns across task types.
RESISC-45 shows diminishing returns, improving only
+1.21% from Swin-T to Swin-L, suggesting vision trans-
formers approach saturation points for scene classification.
Conversely, segmentation (LoveDA mIoU +3.22%) and
detection (DIOR-R mAP +3.31%) exhibit near-linear im-
provements with model growth, indicating complex local-
ization tasks inherently demand higher-capacity architec-
tures. Notably, change detection (LEVIR-CD+ F1 +2.92%)
demonstrates sustained sensitivity to model size, likely re-
quiring deeper feature hierarchies to discern subtle temporal
changes. The 197M-parameter Swin-L achieves marginal
gains (+0.42% mAP over Swin-B) compared to its 2.2× pa-
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rameter increase, highlighting practical trade-offs between
model capacity and computational costs.

Model #Para.
RESISC-45 LoveDA DIOR-R LEVIR-CD+

OA mIoU mAP F1

Swin-T 28M 96.33 52.74 65.51 73.21

Swin-S 50M 96.80 54.12 67.03 74.65

Swin-B 88M 97.15 55.29 68.40 75.83

Swin-L 197M 97.54 55.96 68.82 76.13

Table 3. Model size impact analysis. # Para. means the number
of model parameters.

Quantization Methods Comparison. We compare our
proposed quantization method with uniform quantization
and FedPAQ [32] on the RESISC-45 dataset. As shown
in Tab. 4, our method outperforms uniform quantization
and FedPAQ across all quantization bit-widths. Specifically,
our method achieves 96.27% OA with 8-bit quantization,
96.13% OA with 2-bit quantization, and 96.01% OA with
1-bit quantization. Our FedSense outperforms FedPAQ by
0.14% OA with 8-bit quantization, 0.16% OA with 2-bit
quantization, and 0.22% OA with 1-bit quantization. The
results demonstrate the effectiveness of our proposed quan-
tization method in enhancing the communication efficiency.

Method 32-bit 8-bit 2-bit 1-bit

Uniform Quant 96.33 96.01 95.87 95.56
FedPAQ [32] 96.33 96.13 95.97 95.79
Ours 96.33 96.27 96.13 96.01

Table 4. Quantization bit-width comparison.

SST SCG CSG RESISC-45 LoveDA DIOR-R LEVIR-CD+

✓ 94.52 51.87 64.83 72.43

✓ ✓ 94.70 51.85 64.91 72.55

✓ ✓ 95.25 51.97 65.12 72.78

✓ ✓ ✓ 96.33 52.74 65.51 73.21

Table 5. Effectiveness of proposed components.

Effectiveness of Components. Our ablation study quan-
titatively validates the complementary nature of proposed
components, as summarized in Tab. 5. The standalone
SST mechanism achieves a 94.52% OA on RESISC-45,
51.87% mIoU on LoveDA, 64.83% mAP on DIOR-R, and
72.43% F1 on LEVIR-CD+. The SCG mechanism further
boosts performance across tasks, with 0.18% OA, 0.02%

mIoU, 0.08% mAP, and 0.12% F1 improvements. The CSG
mechanism contributes to a 0.83% OA gain on RESISC-
45, 0.29% mAP on DIOR-R, and 0.35% F1 on LEVIR-
CD+. The full model with all components achieves the
best performance, demonstrating the effectiveness of our
proposed components in enhancing federated learning for
remote sensing tasks.

LE Round
RESISC-45 LoveDA DIOR-R LEVIR-CD+

OA mIoU mAP F1

1 100 96.33 52.74 65.51 73.21
2 50 95.82 51.93 64.08 72.05

4 25 95.17 50.62 62.75 70.89

100 1† 94.50 48.31 60.13 68.24

Table 6. Local epochs (LE) impact analysis. † means one-shot
FL setting.

Parameter Analysis. The trade-off between local com-
putation and communication frequency is systematically in-
vestigated through varying local epochs (LE), as shown
in Tab. 6. Here more local epochs indicate more discrep-
ancy between local and global models, leading to poten-
tial client drift. It is worth noting that the one-shot set-
ting (LE=100) suffers catastrophic performance collapse,
confirming remote sensing data’s inherent heterogeneity de-
mands periodic model synchronization. However, reducing
communication rounds and developing one-shot FL is be-
coming widely adopted for only one round of communica-
tion. We expect that our proposed FedSense can be fur-
ther improved by incorporating more advanced techniques
to handle the one-shot setting.

5. Conclusion & Future Work
This paper takes the first step towards developing a privacy-
preserved pre-training framework (FedSense) for RSFMs.
FedSense enables multiple institutions to collaboratively
train RSFMs without sharing private data. We introduce
Federated Mutual-guidance Learning, which breaks the vi-
cious cycle caused by remote sensing data heterogeneity
and high communication overhead. Specifically, we pro-
pose a SCG mechanism to guide clients updates towards
global-flatness optimal solutions. Additionally, we pro-
pose a CSG mechanism to inject local knowledge into the
server by low-bit communication. Extensive experiments
on four downstream tasks demonstrate the effectiveness of
our FedSense in both full-precision and communication-
reduced scenarios, showcasing remarkable communication
efficiency and performance gains. In the future, we plan to
extend the current framework to support the collaborative
pre-training of multi-modal RSFMs with modality hetero-
geneity.
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Zhu, Mrinalini Kochupillai, Sašo Džeroski, Jan N. van Rijn,
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Towards Privacy-preserved Pre-training of Remote Sensing Foundation Models
with Federated Mutual-guidance Learning

Supplementary Material

A. Overview
We provide the following materials to supplement our paper
and divide them into two sections.
• We provide the theoretical analysis of our proposed Fed-

Sense in Sec. B.
• We provide the details of our pre-training datasets and

downstream datasets in Sec. C

B. Theoretical Analysis
B.1. Assumptions
Assumption 1 (Smoothness) The self-supervised loss Lssl

m

is L-smooth:

∥∇Lssl
m(θ1)−∇Lssl

m(θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1, θ2 (19)

Assumption 2 (Bounded Gradient) Local gradients are
bounded:

E[∥∇Ltotal
m (θm)∥2] ≤ G2, ∀m (20)

Assumption 3 (Parameter Discrepancy) The discrep-
ancy between local and global models satisfies:

∥θm −Θ∥ ≤ δ, ∀m ∈ [M ] (21)

where δ quantifies the maximum client drift.

B.2. Key Lemmas
Lemma 1 (Optimal Perturbation Bound) Under As-
sumption 2, the optimal perturbation ϵ̃ in SCG satisfies:

∥ϵ̃∥ ≤ λ
√
β2δ2 +G2 (22)

Proof 1 From the perturbation approximation:

ϵ̃ ≈ λ ∇L
disc
m

∥∇Ldisc
m ∥

∥ϵ̃∥ ≤ λ

√
∥∇Ldisc

m ∥2
∥∇Ldisc

m ∥2
= λ

Using the parameter discrepancy term∇Ldisc
m = β(θm−Θ)

and Assumption 3:

∥∇Ldisc
m ∥ ≤ βδ

Combining with gradient bound G via triangle inequality
completes the proof.

Lemma 2 (Quantization Error Decay) Let etm be the
feedback error in CSG. With momentum factor α ∈ (0, 1),
the error decays geometrically:

∥etm∥ ≤ αt∥e0m∥+
1− α

1− αt+1

t∑
k=0

αt−k∥ϵkq∥ (23)

where ϵkq is the quantization error at round k.

Proof 2 Unrolling the recursive error update:

etm = αet−1
m + (1− α)ϵtq

= αte0m + (1− α)
t∑

k=1

αt−kϵkq

Taking norms and applying triangle inequality:

∥etm∥ ≤ αt∥e0m∥+ (1− α)
t∑

k=1

αt−k∥ϵkq∥

≤ αt∥e0m∥+
1− α

1− αt+1

t∑
k=0

αt−k∥ϵkq∥

The geometric series bound completes the proof.

B.3. Main Convergence Result
Theorem 1 (Convergence Guarantee) Under Assump-
tions 1-3, let learning rate γ = 1

L
√
T

. After T rounds, the
averaged gradient satisfies:

1

T

T∑
t=1

E∥∇Ltotal(Θt)∥2 ≤ 2L(L0 − L∗)√
T

+
C

T

T∑
t=1

(δ2+∥et∥2)

(24)
where C is a constant combining L,G, β, λ.

Proof 3 (Proof Sketch) Using smoothness (Assump. 1):

Lt+1 ≤ Lt + ⟨∇Lt,Θt+1 −Θt⟩+ L

2
∥Θt+1 −Θt∥2

Substituting the update rule Θt+1 = Θt − γ(∇Ltotal + et):

E[Lt+1] ≤ E[Lt]− γE∥∇Lt∥2 + γE⟨∇Lt, et⟩

+
Lγ2

2
E∥∇Lt + et∥2

1
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Figure 4. Pipeline of privacy-preserved pre-training of RSFMs.

ID Source #samples GSD (m) Coverage

Server WorldView-3/4 240,000 0.5-2.5 Global

Client 01 NOAA 22,292 0.25 USA

Client 02 GF-2 27,300 4.0 China

Client 03 WorldView-2 88,272 0.3-0.5 Global

Client 04 Mixed 125,474 0.3-25 Global

Client 05 QB-2/GE-1 180,562 0.3 Global

Client 06 JL-1/GF-7 40,816 0.8 China

Client 07 Mixed 90,000 0.3-25 Global

Client 08 QB-2/GE-1 180,000 0.3-25 Global

Client 09 NAIP 45,000 1.25 USA

Client 10 Mixed 50,800 0.3-0.75 Global

Total Multi-source 1,000,000 0.25-25 Global

Table 7. Details of the pre-training datasets.

C. Dataset details and implementation details

Scene Classification.
(1) Aerial Image Dataset (AID) [42]. This dataset is com-

prised of 10,000 images across 30 classes, all sourced
from Google Earth and cropped to 600×600 pixels. It
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Figure 5. Illustration on downstream usage of collaboratively
pre-trained RSFMs to accommodate various Earth Observa-
tion tasks.

also includes diverse resolutions from 0.5 to 8 meters
per pixel and geographic variations to enhance robust-
ness.

(2) NWPU-RESISC45 [6]. This dataset comprises 31,500
RGB images at resolutions from 0.2m to 30m across
45 scene classes, each with 700 samples with a size of
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256 times 256 pixels. It offers significant variability in
translation, scale, viewpoint, illumination, and occlu-
sion. It also has high within-class diversity and inter-
class similarity.

Object Detection.
(1) DIOR-R [7]. This dataset consists of 23,463 remote

sensing images, with 192,472 annotated object in-
stances spanning 20 categories. The size of each image
is 800×800 pixels, and spatial resolutions range from
0.5m to 30m. With emphasis on high inter-class sim-
ilarity, intra-class diversity, and object size variability,
it is designed to benchmark object detection methods
in diverse conditions such as different imaging times,
weathers, and resolutions.

(2) DOTA-v1.0 [43]. This dataset consists of 2,806 aerial
images, measuring from 800×800 to 4000×4000 pix-
els, annotated with 188,282 instances across 15 cat-
egories that include airplanes, ships, vehicles, and
bridges. The objects in this dataset are presented in di-
verse scales, orientations and aspect ratios.

Semantic Segmentation.
(1) LoveDA [40]. This dataset for domain-adaptive seman-

tic segmentation features 5,987 images with spatial res-
olution of 0.3 m, each sized at 1024×1024 pixels in
RGB format. Covering 536.15 km2, it spans urban
and rural areas across Nanjing, Changzhou and Wuhan,
and includes pixel-level annotations across seven land-
cover categories. It addresses challenges of multi-
scale objects, complex backgrounds, and inconsistent
class distributions, supporting semantic segmentation
and unsupervised domain adaptation.

(2) Inria [28]. This dataset comprises high-resolution RGB
aerial imagery, with 180 training and 180 test tiles (each
1500×1500 pixels, 0.3 m resolution). It focuses on two
classes: building and non-building, covering a total of
405 km2 of urban areas across five cities in the U.S.
and Austria. The dataset emphasizes generalization
challenges, supporting semantic segmentation across
diverse urban landscapes.

Change Detection.
(1) LEVIR-CD+ [5]. This dataset is a high-resolution ur-

ban building change detection dataset comprised of 985
RGB image pairs from Google Earth, each measuring
1024×1024 pixels with a spatial resolution of 0.5 me-
ters per pixel. Spanning 20 regions in Texas, the dataset
includes building and land use change masks, covering
the years 2002 to 2020 with a 5-year observation in-
terval. It features predominantly urban areas and near-
nadir imagery, making it accessible for change detec-
tion studies.

(2) SECOND [47]. This dataset is a large-scale semantic
change detection benchmark, comprising 4,662 image
pairs, each with a size of 512×512 pixels. The images

were collected from multiple platforms across multi-
ple cities including Hangzhou, Chengdu, and Shang-
hai. It focuses on six land-cover classes: non-vegetated
ground surface, tree, low vegetation, water, buildings,
and playgrounds. SECOND also offers approximately
30 change types, including changes within the same
land-cover class, with pixel-level annotations ensuring
high diversity and label accuracy.
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